FIRMWARE RELEASE NOTES

Versions V2.0.0 to V2.2.21.0

Model HDL-32E
High Definition LiDAR Sensor

Velodyne®
For all new features and changes, refer to the documentation that accompanies the new firmware release for details on usage.

V2.2.21.0 (4-May-2016)

- Fixed: Top-of-hour rollover exceeding 3.6 billion microseconds.
- Fixed: Timestamp jumping issue.
- Added web interface option to determine if use of PPS signal is dependent on the GPS receiver lock.
- Added web interface option to determine if PPS signal should be followed only after NN seconds of stability. Following the rising edge of the PPS signal, all other transitions will be ignored for 0.95 seconds.
- Added web interface option to determine if the sensor will use GPS time from the NMEA sentence only if GPS receiver lock is good; or keep following GPS time from the NMEA sentence regardless of GPS receiver lock status.

V2.2.20.0 (2-Feb-2016) - Beta

- Fixed: In some busy networks the Telemetry UDP message (port 8308) NMEA field may go missing (blank).
- Using the Web Interface to set an invalid IP addresses into the NET IP field will be ignored.
- Fixed: Sensor was using an old IP address from which to send data, even after a DHCP server assigns the sensor an IP address. Sensor will now use the new IP address assigned by a DHCP server.
- ADDED: Data packet tagging
 - Every data packet now identifies the type of sensor and return type the packet is formatted for. Future version of HDL-32E firmware will support this as well.
 - The following chart explains what the bytes mean:

<table>
<thead>
<tr>
<th>Return Type</th>
<th>Field (37h)</th>
<th>Address: 4DEh</th>
<th>Field (21h)</th>
<th>address: 4DFh</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL32 Strongest</td>
<td>37h</td>
<td></td>
<td>21h</td>
<td></td>
</tr>
<tr>
<td>HDL32 Last</td>
<td>38h</td>
<td>39h</td>
<td>22h</td>
<td>22h</td>
</tr>
<tr>
<td>HDL32 Dual</td>
<td>39h</td>
<td>21h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLP16 Strongest</td>
<td>37h</td>
<td></td>
<td>22h</td>
<td></td>
</tr>
<tr>
<td>VLP16 Last</td>
<td>38h</td>
<td>21h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLP16 Dual</td>
<td>39h</td>
<td>22h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V2.2.9.2 (21-Apr-2015)

- Recompile design routing to correct jitter
 - Version 2.2.9.1 caused motor noise and upload issues in a small subset of sensors.

V2.2.9.1 (13-Mar-2015)

- Added support for NMEA over Ethernet
 - Sensor can now process NMEA timestamp data over Ethernet port 10110. Data follows
NMEA 0183 standards. PPS signal must still be sent over serial connection.

- Introduced Field of View feature
 - Customers may now select what rotational range of data to include in data stream. If all data in a packet is outside the configured FOV, the packet will not be created. Note: This does not prevent the sensor from firing lasers outside the FOV.

- Fixed regression in NMEA sentence processing
 - Fixes issue with some GPS units that support non zero fractional seconds fields in the NMEA $GPRMC sentence. In previous 2.2.X.X builds, this could cause the Top of Hour Counter to be off as much as 1 second. 2.1.X.X Firmware does not have this issue.

V2.2.4.0 (07-Nov-2014)

- Introduced dual return option.
 - Customers may now select what return type the sensor outputs. Choices are ‘Strongest,’ which is the legacy operation mode, ‘Last,’ which gives the furthest return recorded, and ‘Dual,’ which returns both strongest and last. Please see updated documentation for more information including packet formatting for dual return.

- Introduced rotational phase lock feature.
 - Phase lock can be used to synchronize the rotational position of multiple sensors based on GPS time and relative sensor orientation.

- Added check for valid NMEA GPS updates.
 - NMEA sentences are now checked for basic syntax before being accepted. Two consecutive valid sentences are required to synchronize uSec clock.

- Improved PPS handling.
 - Prevented a bouncing PPS signal from causing invalid synchronization.

- Improved data reporting.
 - Fixed issue that caused certain units, under narrow conditions, to return data from previous channels.
V2.1.7.1 (10-Oct-2014)

• Improved PPS handling.
 o In rare startup conditions, issues with GPS PPS signal could cause the system to hang.
• Added support for improved manufacturing calibration process.
 o Further manufacturing controls added to improve performance and reduce variance based on component tolerances.

V2.1.7 (31-Oct-2013)

• Added new rotation speed control algorithm.
 o Rotation speed now has greatly improved accuracy using closed loop feedback system.
• Added configuration options for port settings.
 o Firmware now allows customization of the ports that position and data packets are sent on.
• Improved web server GUI support.
 o All web server GUI features are displayed correctly even using non-Internet Explorer browsers.
• Improved accuracy on diagnostics page read-outs.
 o Some of the values displayed were improperly scaled previously.
• Added PPS detection and reporting to position packets and web server GUI.
 o The sensor will now detect and report the status of the PPS data received from the GPS device.
• Fixed maximum speed limit.
 o A small portion of sensors were unintentionally limited to less than 1200 rpm (20Hz).

V2.0.6 (14-Mar-2013)

• Fixed noisy returns under certain conditions.
 o This has also been referred to as Split Noise returns, where a laser will sometimes return a range that looks correct (in line with the other lasers) and sometimes return a shorter range.

V2.0.4 (8-Feb-2013)

• Improved uplink robustness.
 o Uploading new firmware or calibration files under certain conditions was aborted and needed to be re-tries several times. This version has improved the uplink process significantly.

V2.0.2 (20-Dec-2012)

• Improved tachometer display accuracy.
 o This version has a much higher display accuracy of the rotations per minute (RPM) on the screen of the Web GUI interface.

V2.0.1

• Hot fix for inverted GPS pulse.
 o HDL32 time synchronization via an external PPS pulse was accidentally linked to the falling edge resulting in a delay of time synchronization in the amount of the PPS pulse duration. This version of software now triggers correctly on the rising edge of the external PPS signal.
V2.0.0

- Please see manual for descriptions of new functionality.